5 research outputs found

    Towards better reliability in fetal heart rate variability using time domain and spectral domain analyses. A new method for assessing fetal neurological state?

    Get PDF
    OBJECTIVES: Fetal heart rate variability (FHRV) has shown potential in fetal surveillance. Therefore, we aimed to evaluate the reliability of time domain and spectral domain parameters based on non-invasive fetal electrocardiography (NI-FECG). METHOD: NI-FECG, with a sampling frequency of 1 kHz, was obtained in 75 healthy, singleton pregnant women between gestational age (GA) 20(+0) to 41(+0). The recording was divided into a) heart rate pattern (HRP) and b) periods fulfilling certain criteria of stationarity of RR-intervals, termed stationary heart rate pattern (SHRP). Within each recording, the first and the last time series from each HRP with less than 5% artifact correction were analyzed and compared. Standard deviation of normal-to-normal RR-intervals (SDNN), root mean square of successive differences (RMSSD), high frequency power (HF-power), low frequency power (LF-power), and LF-power/HF-power were performed. A multivariate mixed model was used and acceptable reliability was defined as intraclass correlation coefficient (ICC) ≥ 0.80 and a coefficient of variation (CV) ≤ 15%. Based on these results, the CV and ICC were computed if the average of two to six time series was used. RESULTS: For GA 28(+0) to 34(+6), SDNN and RMSSD exhibited acceptable reliability (CV 90%), whereas GA 35(+0) to 41(+0)and 20(+0) to 27(+6) showed higher CVs. Spectral domain parameters also showed high CVs However, by using the mean value of two to six time series, acceptable reliability in SDNN, RMSSD and HF-power from GA 28(+0) was achieved. Stationarity of RR-intervals showed high influence on reliability and SHRP was superior to HRP, whereas the length of the time series showed minor influence. CONCLUSION: Acceptable reliability seems achievable in SDNN, RMSSD and HF-power from gestational week 28. However, stationarity of RR-intervals should be considered when selecting time series for analyses

    Fetal respiratory movements improve reliability of heart rate variability and suggest a coupling between fetal respiratory arrhythmia and vagal activity

    Get PDF
    Fetal heart rate variability (FHRV) reflects autonomic cardiac regulation. The autonomic nervous system constantly adjusts the heart rate to maintain homeostasis. By providing insight into the fetal autonomic state, FHRV has the potential to become an investigational and clinical instrument. However, the method needs standardization and the influence of fetal movements, including fetal respiratory movements, is not well explored. Therefore, in a highly standardized setting, the aim was to evaluate the association between fetal movements and fetal heart rate variability (FHRV) including their impact on reliability. Fetal heart rate was obtained by noninvasive fetal electrocardiography (NI‐FECG) and fetal movements by simultaneous ultrasound scanning in 30 healthy singleton pregnant women on two occasions with a maximum interval of 7 days. The standard deviation of normal‐to‐normal RR‐intervals (SDNN), root mean square of successive RR‐interval differences (RMDDS), high‐frequency power (HF‐power), low‐frequency power (LF‐power), and LF/HF were measured. A multivariate mixed model was used and reliability was defined as acceptable by a coefficient of variance (CV) ≤15% and an intraclass correlation coefficient (ICC) ≥0.80. During time periods with fetal respiratory movements, the highest reliability was achieved. Intra‐ and inter‐observer reliability measurements were very high (CV: 0–9%; ICC ≧ 0.86). Within the same recording, SDNN and RMSSD achieved acceptable reliability (CV: 14–15%; ICC ≧ 0.80). However, day‐to‐day reliability displayed high CV’s. In time periods with fetal respiratory movements, as compared to periods with quiescence RMSSD and HF‐power were higher (Ratio: 1.33–2.03) and LF/HF power lower (Ratio: 0.54). In periods with fetal body movements SDNN, RMSSD and HF‐power were higher (Ratio: 1.27–1.65). In conclusion, time periods with fetal respiratory movements were associated with high reliability of FHRV analyses and the highest values of parameters supposed to represent vagal activity

    Growth-restricted human fetuses have preserved respiratory sinus arrhythmia but reduced heart rate variability estimates of vagal activity during quiescence

    Get PDF
    The aim was to assess the association between fetal growth restriction (FGR) and fetal heart rate variability (FHRV) in relation to fetal movements. A prospective observational cohort study was performed. Non‐invasive fetal electrocardiography (NI‐FECG) allowed beat‐to‐beat assessments with <5% corrections of RR intervals. FHRV analyses included: Root mean square of successive RR interval differences (RMSSD), high frequency power (HF power), and low frequency power (LF power). Fetal movements were categorized by continuous ultrasound scanning. We enrolled 36 singleton pregnant women expecting a small fetus (< the 2.3 percentile of mean weight for gestational age) diagnosed by ultrasound, of whom 25 presented with a birthweight < the 2.3 percentile. Among these, 11 were excluded due to low quality NI‐FECG recordings, leaving 14 women with 28 recordings eligible for inclusion in the analyses. The control group consisted of 22 healthy fetuses with birthweights between the 10th and the 90th percentile (average for gestational age [AGA]). In FGR fetuses the HRV response to respiratory activity was comparable to that of AGA fetuses. RMSSD (Ratio 1.54 [95% CI: 1.33; 1.79]) and HF power (Ratio 2.88 [95% CI: 2.12; 3.91]) increased, whereas LF/HF power (Ratio: 0.44 [95% CI: 0.31;0.63]) decreased. However, during fetal quiescence, FGR fetuses differed significantly from AGA fetuses. Compared to AGA fetuses, FGR fetuses displayed lower RMSSD (Ratio 0.77 (95% CI: 0.58; 1.02)) and HF power (Ratio 0.56 (95% CI:0.32; 0.98)). This reduction was associated with the severity of the FGR. In conclusion, FGR fetuses displayed a respiratory sinus arrhythmia (RSA) comparable to AGA fetuses; however, more important, parameters representing cardiac vagal activity were impaired in FGR fetuses during quiescence. RSA may constitute an intrinsic function of the cardiovascular system, which is unaffected by fetal compromise. However, the basic cardiac outflow assessed during fetal quiescence indicates a suppressed cardiac vagal activity in the FGR fetuses

    Home management by remote self-monitoring in intermediate- and high-risk pregnancies:A retrospective study of 400 consecutive women

    No full text
    INTRODUCTION: Home management in general is considered to improve patient well‐being, patient involvement and cost‐effectiveness, for obstetric patients as well. But concerns regarding inclusion of intermediate‐ and high‐risk pregnant women are an issue and a limitation for clinical implementation. This retrospective study evaluated the outcome and safety of extended remote self‐monitoring of maternal and fetal health in intermediate‐ and high‐risk pregnancies. MATERIAL AND METHODS: The study reports on 400 singleton pregnancies complicated by preterm premature rupture of membranes (PPROM), fetal growth restriction, preeclampsia, gestational diabetes mellitus, high‐risk of preeclampsia, or a history of previous fetal or neonatal loss. Remote self‐monitoring was performed by pregnant women and included C‐reactive protein, non‐stress test by cardiotocography, temperature, blood pressure, heart rate, and a questionnaire concerning maternal and fetal wellbeing. Data were transferred to the hospital using a mobile device platform and evaluated by healthcare professionals. In case of non‐reassuring registrations, the pregnant women were invited for assessment at the hospital. Primary outcome was perinatal death. Secondary outcomes were other maternal and perinatal complications. RESULTS: No severe maternal complications were observed. Nine fetal or neonatal deaths occurred, all secondary to malformations, severe fetal growth restriction, extreme prematurity or lung hypoplasia in cases of PPROM before 24 weeks. Even in the latter group, fetal and neonatal survival was 78% (18/23) and rose to 97% (60/62) when PPROM occurred after a gestational age 23+6 weeks. None of the fetal or neonatal deaths were attributable to the home‐management setting. CONCLUSIONS: Home‐monitoring including remote self‐monitoring of fetal and maternal well‐being in intermediate‐ and high‐risk pregnancies seems to be a safe alternative to inpatient or frequent outpatient care, which sets the stage for a new way of thinking of hospital care. The implementation process included staff training workshops and development of patient enrollment practice with clarification of expectations and responsibilities, which can be crucial to the results
    corecore